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Abstract 

TCP is a reliable transport protocol tuned to perform well in 
traditional networks made up of links with low bit-error 
rates. Networks with higher bit-error rates, such as those 
with wireless links and mobile hosts, violate many of the 
assumptions made by TCP, causing degraded end-to-end 
performance. In tbis paper, we describe the design and 
implementation of a simple protocol, called the snoop pro- 
tocol, that improves TCP performance in wireless networks. 
The protocol modifies network-layer software mainly at a 
base station and preserves end-to-end TCP semantics. The 
main idea of the protocol is to cache packets at the base sta- 
tion and perform local retransmissions across the wireless 
link. We have implemented the snoop protocol on a wireless 
testbed consisting of IBM ThinkPad laptops and i486 base 
stations communicating over an AT&T Wavelan. Our 
experiments show that it is significantly more robust at deal- 
ing with unreliable wireless links as compared to normal 
TCP; we have achieved throughput speedups of up to 20 
times over regular TCP in our experiments with the proto- 
col. 

1. Intrcdu.ction 

Recent activity in mobile computing and wireless networks 
strongly indicates that mobile computers and their wireless 
communiication links will be an integral part of future inter- 
networks.. Communication over wireless links is character- 
ized by limited bandwidth, high latencies, high bit-error 
rates and temporary disconnections that must be dealt with 
by network protocols and applications. In addition, proto- 
cols and applications have to handle user mobility and the 
handoffs that occur as users move from cell to cell in cellu- 
lar wireless networks. These handoffs involve transfer of 
communication state (typically network-level state) from 
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one base station (a router between a wired and wireless net- 
work) to another, and typically last anywhere between a few 
tens to a few hundreds of milliseconds. 

Reliable transport protocols such as TCP [Pos81, Ste94, 
Bra891 have been tuned for traditional networks made up of 
wired links ant3 stationary hosts. TCP performs very well on 
such networks by adapting to end-to-end delays and packet 
losses caused by congestion. TCP provides reliability by 
maintaining a running average of estimated round-trip delay 
and mean deviation, and by retransmitting any packet 
whose acknowledgment is not received within four times 
the deviation from the average. Due to the relatively low 
bit-error rates over wired networks, all packet losses are 
correctly assumed to be because of congestion. 

In the presence of the high error rates and intermittent con- 
nectivity characteristic of wireless links, TCP reacts to 
packet losses as it would in the wired environment: it drops 
its transmission window size before retransmitting packets, 
initiates congestion control or avoidance mechanisms (e.g., 
slow start [Jac88]) and resets its retransmission timer 
(Karn’s Algorithm [KP87]). These measures result in an 
unnecessary reduction in the link’s bandwidth utilizatior:, 
thereby causing a significant degradation in performance in 
the form of poor throughput and very high interactive 
delays [CI94]. 

In this paper, we describe the design and implementation cf 
a simple protocol to alleviate this degradation and present 
the results of several experiments using this protocol. Our 
aim is to improve the end-to-end performance on networks 
with wireless links without changing existing TCP imple- 
mentations at hosts in the fixed network and wilhout recom- 
piling or relinking existing applications. We. achieve this by 
a simple set of modifications to the network:-layer (IP) sofi- 
ware at the base station. These modifications consist mainly 
of caching packets and performing local retransmissions 
across the wireless link by monitoring the acknowledg- 
ments to TCP packets generated by the receiver. Our exper- 
iments show speedups of up to 20 times over regular TCP in 
the presence of bit errors on tbe wireless link. We have also 
found that our protocol is significantly more robust at dea’l- 
ing with multiple packet losses in a single window as com- 
pared to regular TCP 

The rest of this paper is organized as follows. In Section :!, 



www.manaraa.com

we describe and evaluate some design alternatives and 
related work that addresses this problem. In Section 3, we 
describe the details and dynamics of the protocol. We 
describe our implementation and the modifications to the 
router software at the base station in Section 4 and the 
results of several of our experiments in Section 5. Section 6 
compares our protocol with some of the other alternatives 
published in the literature. We discuss our future plans in 
Section 7 and conclude with a summary in Section 8. 

2. Design Alternatives and Related Work 

Is TCP an appropriate protocol model for wireless net- 
works? We believe it is. Since many network applications 
are built on top of TCP, and will continue to be in the fore- 
seeable future, it is important to improve its performance in 
wireless networks wifhout any modifications to thejxed 
hosts. This is the only way by which mobile devices com- 
municating on wireless links can seamlessly integrate with 
the rest of the Internet. 

Recently, several reliable transport-layer protocols for net- 
works with wireless links have been proposed [BB94, 
BB95, C194, YB94J to alleviate the poor end-to-end perfor- 
mance of unmodified TCP in the wireless medium. We sum- 
marize these protocols in this section and point out the 
advantages and disadvantages of each method. In Section 6. 
we present a more detailed comparison of these schemes 
with our protocol. 

l The Split Connection Approach: The Indirect-TCP 
(I-TCP) protocol [BB94, BB95] was one of the first pro- 
tocols to use this method. It involves splitting a TCP 
connection between a fixed and mobile host into two 
separate connections at the base station -- one TCP con- 
nection between the fixed host and the base station, and 
the other between the base station and the mobile host. 
Since the second connection is over a one-hop wireless 
link, there is no need to use TCP on this link. Rather, a 
more optimized wireless link-specific protocol tuned for 
better performance can be used [YB94]. The advantage 
of the split connection approach is that it achieves a sep- 
aration of flow and congestion control of the wireless 
link from that of the fixed network and hence results in 
good bandwidth at the sender. However, there are some 
drawbacks of this approach, including: 

I. Semantics: I-TCP acknowledgments and semantics are 
not end-to-end. Since the TCP connection is explicitly 
split into two distinct ones, acknowledgments of TCP 
packets can arrive at the sender even before the packet 
actually reaches the intended recipient. I-TCP derives 
its good performance from this splitting of connec- 
tions. However, as we shall show, there is no need to 
sacrifice the semantics of acknowledgments in order to 
achieve good performance. 

. The Fast-Retransmit Approach [CI94]: This approach 
addresses the issue of TCP performance when communi- 
cation resumes after a handoff. Unmodified TCP at the 
sender interprets the delay caused by a handoff process 
to be due to congestion (since TCP assumes that all 
delays are caused by congestion) and when a timeout 
occurs, reduces its window size and retransmits unac- 
knowledged packets. Often, handoffs complete rela- 
tively quickly (between a few tens to a couple of 
hundred milliseconds), and long waits are required by 
the mobile host before timeouts occur at the sender and 
packets start getting retransmitted. This is because of 
coarse retransmit timeout granularities (on the order of 
500 ms) in most TCP implementations. The fast retrans- 
mit approach mitigates this problem by having the 
mobile host send a certain threshold number of duplicate 
acknowledgments to the sender. This causes TCP at the 
sender to immediately reduce its window size and 
retransmit packets starting from the first missing one (for 
which the duplicate acknowledgment was sent). The 
main drawback of this approach is that it only addresses 
handoffs and not the error characteristics of the wireless 
link. 

. Link-level Retransmissions [PAL+95]: In this 
approach, the wireless link implements a retransmission 
protocol coupled with forward error correction at the 
data-link level. The advantage of this approach is that it 
improves the reliability of communication independent 
of the higher-level protocol. However, TCP implements 
its own end-to-end retransmission protocol. Studies have 
shown that independent retransmission protocols such as 
these can lead to degraded performance, especially as 
error rates become significant [DCY93]. A tight cou- 
pling of transport- and link-level retransmission time- 
outs and policies is necessary for good performance. In 
particular, information needs to be passed down to the 
data link layer about timeout values and policies reason- 
able for co-existence with the higher transport layer pol- 
icy. 

In summary, several schemes have been proposed to 

2. Application relinking: Applications running on the 
mobile host have to be relinked with the I-TCP library 
and need to use special I-TCP socket system calls in 
the current implementation. 

3. Software overhead: Every packet needs to go through 
the TCP protocol stack and incur the associated over- 
head four times -- once at the sender, twice at the base 
station, and once at the receiver. This also involves 
copying data at the base station to move the packet 
from the incoming TCP connection to the outgoing 
one. This overhead is lessened if a more lightweight, 
wireless-specific reliable protocol is used on the last 
link. 
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improve the performance of TCP in wireless networks. 
However, they have the disadvantages described above. We 
feel that it is possible to design a protocol to solve this prob- 
lem without these drawbacks. The rest of the paper 
describes the clesign, implementation, and performance of 
such a protocol. 

3. The Snoop Protocol 

Most current network applications that require reliable 
transmission use TCP. Therefore, it is desirable to achieve 
our goal of improving its performance in our network with- 
out changing existing TCP implementations in the fixed net- 
work. The only components of the network we can expect to 
have administrative control over are the base stations and 
the mobile Ihosts. For transfer of data from a fixed host to a 
mobile host, we make modifications only to the routing 
code at the base station. These modifications include cach- 
ing unacknowledged TCP data and performing local 
retransmissions based on a few policies dealing with 
acknowledgme.nts (from the mobile host) and timeouts. By 
using duplicate acknowledgments to identify packet loss 
performing local retransmissions as soon as this loss is 
detected, the protocol shields the sender from the vagaries 
of the wirelmess link. In particular, transient situations of very 
low communication quality and temporary disconnectivity 
are hidden from the sender. This results in significantly 
improved performance of the connection, without sacrific- 
ing any of the end-to-end semantics of TCP, modifying host 
TCP code in the fixed network or relinking existing applica- 
tions. This combination of improved performance, pre- 
served protocol semantics and full compatibility with 
existing applications is the main contribution of our work. 

A preliminary design of a protocol based on these ideas 
appeared in [ABSK95]. Simulations of the protocol indi- 
cated that it was capable achieving the same throughput as 
unmodified. TCP at 10 times higher bit-error rates. These 
promising results indicated that an implementation would 
be worthwhile. The simulated protocol was used as the basis 
of the initial implementation. Several parts of the protocol 
were changed based on measurements and our experience 
with it. 

3.1 Data ‘lkansfer from a Fixed Host 

We first describe the protocol for transfer of data from a 
fixed host (FH) to a mobile host (MH) through a base sta- 
tion (BS). The base station routing code is modified by add- 
ing a module, called the snoop, that monitors every packet 
that passes through the connection in either direction. No 
transport layer code runs at the base station. The snoop 
module maintains a cache of TCP packets sent from the FH 
that haven’t yet been acknowledged by the MH. This is easy 
to do since TCP has a cumulative acknowledgment policy 
for receivead packets. When a new packet arrives from the 

1 Packet arrives 

Common case 

Figure 1. Flowchart for snoop-data(). 

FH, snoop adds it to its cache and passes the packet on. to 
the routing code which performs the normal routing ftrnc- 
tions. The snoop module also keeps track of all the 
acknowledgments sent from the mobile host. When a packet 
loss is detected (either by the arrival of a duplicate acknowl- 
edgment or by a local timeout), it retransmits the lost packet 
to the MH if it has the packet cached. Thus, the base station 
(snoop) hides the packet loss from the FH by not propagat- 
ing duplicate acknowledgments, thereby preventing unnec- 
essary congestion control mechanism invocations. 

The snoop module has two linked procedures, 
snoop-data(:) and snoop-ack(). Snoop-data0 processes 
and caches packets intended for the MH while 
snoop-ack() processes acknowledgments (ACKs) coming 
from the MH and drives local retransmissions from the base 
station to the mobile host. The flowcharts summarizing the 
algorithins for snoop-data0 and snoop--ack() are shown 
in Figures 3 and 2 and are described below. 

3.1.1 Snoop-data(). 

Snoop-data0 processes packets from the fixed host. TCP 
implements a sliding window scheme to transmit packets 
based on its congestion window (estimated from local com- 
putations at the sender) and the flow control window (adver- 
tised by the receiver). TCP is a byte stre.am protocol and 
each byte of data has an associated sequence number. A 
TCP packet (or segment) is identified uniquely by the 
sequence number of its first byte of data and its size. At the 
BS, snoop keeps track of the last sequence number seen for 
the connection. One of several kinds of packets can arrive at 
the BS from the FH, and snoop-data0 processes them in 
different ways: 
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1. A new packet in the normal TCP sequence: This is the 
common case, when a new packet in the normal 
increasing sequence arrives at the BS. In this case the 
packet is added to the snoop cache and forwarded on to 
the MH. We do not perform any extra copying of data 
while doing this. We also place a timestamp on one 
packet per transmitted window in order to estimate the 
round-trip time of the wireless link. The details of 
these steps are described in Section 4. 

2. An out-of-sequence packet that has been cached ear- 
lier: This is a less common case, but it happens when 
dropped packets cause timeouts at the sender. It could 
also happen when a stream of data following a TCP 
sender fast retransmission arrives at the base station. 
Different actions are taken depending on whether this 
packet is greater or less than the last acknowledged 
packet seen so far. If the sequence number is greater 
than the last acknowledgment seen, it is very likely that 
this packet didn’t reach the MH earlier, and so it is for- 
warded on. If, on the other hand, the sequence number 
is less than the last acknowledgment, this packet has 
already been received by the MH. At this point, one 
possibility would be to discard this packet and con- 
tinue, but this is not always the best thing to do. The 
reason for this is that the original ACK with the same 
sequence number could have been lost due to conges- 
tion while going back to the FH. In order to facilitate 
the sender getting to the current state of the connection 
as fast as possible, a TCP acknowledgment corre- 
sponding to the last ACK seen at the BS is generated 
by the snoop module (with the source address and port 
corresponding to the MH) and sent to the FH. 

3. An out-of-sequence packet that has not been cached 
earlier: In this case the packet was either lost earlier 
due to congestion on the wired network or has been 
delivered out of order by the network. The former is 
more likely, especially if the sequence number of the 
packet (i.e. the sequence number of its first data byte) 
is more than one or two packets away from the last one 
seen so far by the snoop module. This packet is for- 
warded to the MH, and also marked as having been 
retransmitted by the sender. Snoop-ack() uses this 
information to process acknowledgments (for this 
packet) from the MH. 

3.1.2 Snoop-ack ( ) . 

Snoop-ack() monitors and processes the acknowledg- 
ments (ACKs) sent back by the MH and performs various 
operations depending on the type and number of acknowl- 
edgments it receives. These ACKs fall into one of three cat- 
egories: 

Ack 

Common case 

1 Yes 

Retransmit lost 
packet with high 
priority 

for lost packet Next pkt lost 

1. 

Figure 2. Flowchart for snoop-ack(). 

A new ACK: This is the common case (when the con- 
nection is fairly error-free and there is little user move- 
ment), and signifies an increase in the packet sequence 
received at the MH. This acknowledgment initiates the 
cleaning of the snoop cache and all acknowledged 
packets are freed. The round-trip time estimate for the 
wireless link is also updated at this time. This estimate 
is not done for every packet, but only for one packet in 
each window of transmission, and only if no retrans- 
missions happened in that window. The last condition 
is needed because it is impossible in general to deter- 
mine if the arrival of an acknowledgment for a retrans- 
mitted packet was for the original packet or for the 
retransmission [KP87]. Finally, the acknowledgment is 
forwarded to the FH. 

2. A spurious ACK: This is an acknowledgment less than 
the last acknowledgment seen by the snoop module 
and is a situation that rarely happens. It is discarded 
and the protocol continues. 

3. A duplicate ACK (DUPACK): This is an ACK that is 
identical to a previously received one. In particular, it 
is the same as the last ACK seen so far. In this case the 
next packet in sequence from the DUPACK has not 
been received by the MH. However, some subsequent 
packets in the sequence have been received, since the 
MH generates a DUPACK for each TCP segment 
received out of sequence. One of several actions is 
taken depending on the type of duplicate acknowledg- 
ment and the current state of snoop: 

l The first case occurs when we receive a DUPACK 
for a packet that is either not in the snoop cache or 
has been marked as having been retransmitted by 
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the sender. If the packet is not in the cache, it needs 
to be resent from the FH, perhaps after invoking 
the necessary congestion control mechanisms at 
the sender. If the packet was marked as a sender- 
retransmitted packet, the DUPACK needs to be 
rou.ted to the FH because the TCP stack there 
maintains state based on the number of duplicate 
acknowledgments it receives when it retransmits a 
pac:ket. Therefore, both these situations require the 
DU’PACK to be routed to the FH. 

l The second case occurs when snoop gets a 
DUPACK that it doesn’t expect to receive for the 
packet. This typically happens when the first 
DUPACK arrives for the packet, after a subsequent 
packet in the stream reaches the MH. The arrival of 
each successive packet in the window causes a 
DUPACK to be generated for the lost packet. In 
order to make the number of such DUPACKs as 
small as possible, the lost packet is retransmitted as 
soon as the loss is detected, and at a higher priority 
than normal packets. This is done by maintaining 
two, queues at the link layer for high and normal 
priority packets. In addition, snoop also estimates 
the maximum number of duplicate acknowledg- 
ments that can arrive for this packet. This is done 
by counting the number of packets that were trans- 
mitted after the lost packet prior to its retransmis- 
sion. 

l The third case occurs when an “expected” 
DUPACK arrives, based on the above maximum 
esti:mate. The missing packet would have already 
bee:n retransmitted when the first DUPACK arrived 
(and the estimate was zero), so this acknowledg- 
ment is discarded. In practice, the retransmitted 
packet reaches the MH before most of the later 
packets do and the BS sees an increase in the ACK 
sequence before all the expected DUPACKs arrive. 

Retransmitting packets at a higher priority using a fast 
queue improves performance at all error rates. The benefits 
of this approach are most visible at low to medium bit-error 
rates. This is a consequence of the average queue lengths in 
the retransmi.ssion queue. At high bit-error rates, most pack- 
ets need to be retransmitted, and there is no significant 
advantage tso be derived from maintaining two queues. 
However, at low and medium error rates, the fast queue 
enables retransmitted packets to reach the mobile host 
sooner than if there were only one queue, leading to 
improved throughput. 

Snoop keeps track of the number of local retransmissions 
for a packet, but resets this number to zero if the packet 
arrives again. from the sender following a timeout or a fast 
retransmission. In addition to retransmitting packets 
depending on the number and type of acknowledgments, the 
snoop protocol also performs retransmissions driven by tim- 

eouts. This is described in more detail in the section son 
Implementation (Section 4). 

3.2 Data Transfer from a Mobile Host 

It is unclear that a protocol with modifications made only at 
the base station can substantially improve end-to-end per- 
formance of reliable bulk data transfers from the mobile 
host to other hosts on the network, while preserving the pre- 
cise semantics of TCP acknowledgments. For exampl.e, 
simply caching packets at the base station and retransmit- 
ting them as necessary will not be very useful, since the 
bulk of the packet losses are likely to be from the mobi.le 
host to the ba:se station. There is no way for the mobile 
sender to know if the loss of a packet happened on the wire- 
less link or elsewhere in the network due to congestion. 
Since TCP performs retransmissions on the basis of round- 
trip time estimates for the connection, sender timeouts for 
packets lost on the (first) wireless link will happen much 
later than they should. 

Our design involves a slight modification to the TCP code at 
the mobile host. At the base station, we keep track of the 
packets that were lost in any transmitted window, and gen- 
erate negative acknowledgments (NACKs) for those pack- 
ets back to the mobile. This is especially useful if several 
packets are lost in a single transmission window, a situation 
that happens often under high interference or in fades where 
the strength and quality of the signal are low. These NACKs 
are sent when either a threshold number of packets (from a 
single window) have reached the base station or when a cer- 
tain amount of time has expired without any new packets 
from the mobile. Encoding these NACKs as a bit vector can 
ensure that the relative fraction of the sparse wireless band- 
width consumed by NACKs is relatively low. 

Our implementation of NACKs is based on using the Selec- 
tive Acknowledgment (SACK) option in TCP [JB88]. 
Selective acknowledgments, currently unsupported in most 
TCP implementations, were introduced to improve TCP 
performance for connections on “long fat networks”, 1or 
LFNs. These are networks where the capacity of the net- 
work (the product of bandwidth and round-trip time) is 
large. SACKS were proposed to handle multiple dropped 
packets in a window, but the current TCP specification 
(JBB92) does not include this feature. The basic idea here is 
that in addition to the normal cumulative ACKs the receiver 
can inform the sender which specific packets it didn’t 
receive. The snoop protocol uses SACKS to cause the 
mobile host to quickly (relative to the round-trip time of the 
connection) retransmit missing packets. The only change 
required at the mobile host will be to enable SACK process- 
ing. No changes of any sort are required in any of the fixed 
hosts. 

We have implemented the ability to generate SACKs at the 
base station and process them at the mobile hosts to retrans- 
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Ethernet Base Station 

Transmitter 

Figure 3. Network topology for experiments. 

mit lost packets and are currently measuring the perfor- 
mance of transfers from the mobile host. 

3.3 Mobility Handling 

the handoff occurs information to synchronize the snoop 

Handoffs in our system are based on multicast [Deegl]. 
Most often, they are mobile-initiated and occur when the 

cache is sent to the base station that the mobile host has 

mobile host discovers a base station with a stronger signal 

transferred to. This scheme has the advantage that the dura- 

than the current one. When a handoff is requested by the 
mobile host or anticipated by the base station, the nearby 
base stations also begin receiving packets destined for the 

tion of a handoff is quite short (because the snoop cache has 

mobile host. This allows them to begin building up their 

been primed in advance) and the sender can continue send- 

snoop caches for this mobile host. However, during this 
period these nearby “buffering” base stations cannot snoop 
on any acknowledgments sent from the mobile host. Once 

ing packets without experiencing much delay. 

mation that includes the packet sequence number, its size, 
the number of local retransmissions, and a flag set if the 
packet was retransmitted by the sender. In general, the size 
of the cache needs to be large enough to handle the maxi- 
mum transmission window size. In practice, we set a “high- 
water mark” on the cache: the only packets accepted into 
the cache after this point is reached are those that are out of 
order and earlier in sequence than the last one seen. Other 
packets are forwarded to the mobile host without being 
cached. This is because it is more important for the older, 
rather than newer, packets to be cached and retransmitted, 
since they will cause sender timeouts earlier. 

Several studies have shown that one of the predominant 
costs of TCP is the copying of data [CJRS89, KP93]. We 
use the reference counting mechanism present in kernel 
mbufs to avoid data copying in the snoop protocol. Thus, 
we do not incur any extra overhead associated with copying 
at the base station. When error rates are relatively low, the 
protocol overhead is small -- an incoming packet is added to 
the cache without copying it, and it is forwarded on to the 
mobile host. A small number of state variables (e.g., the last 
sequence number seen) are updated. When a new acknowl- 
edgment arrives at the base station, we forward it on to the 
fixed host and clean the snoop cache by freeing the packets 
corresponding to packets already acknowledged by the 
mobile. The last link round-trip time estimate is updated 
once per transmission window. 

We have implemented the algorithms for handoff and inte- 
grated it with the snoop protocol. Preliminary measure- 
ments indicate that handoffs are completed between 10 and 
25 ms. 

4. Implementation 

We have implemented the snoop protocol on a testbed con- 
sisting of IBM ThinkPad laptops and i486 base stations run- 
ning BSD/OS 2.0 from BSDI, communicating over an 
AT&T Wavelan. The maximum raw bandwidth of the 
Wavelan is about 2Mb/s per mobile-host. The implementa- 
tion currently supports bulk transfers to and from mobile 
hosts and supports smooth handoffs. The network topology 
is shown in Figure 3. 

of the last link. We compute this using the standard adaptive 

In addition to retransmitting packets depending on the num- 

technique, srtt=(l -@*old-srtt+a l currJtt, with a set to 
0.25, so that integer shift operations can be used. The packet 

ber and type of acknowledgments received, the snoop proto- 

is retransmitted if an acknowledgment hasn’t been received 
in twice this time. In order to limit the amount of time spent 

co1 also performs retransmissions driven by timeouts. There 

processing timer interrupts, we don’t timeout more fre- 
quently than a threshold time, currently set to 40ms. Addi- 

are two types of timer interrupts in the protocol, the ruund- 

tionally, we trigger this timeout only after the first 
retransmission of a packet from the snoop cache, caused by 

trip timer and the persist timer. The round-trip timer is 

the arrival of a duplicate acknowledgment. This also 
ensures that a negligible number of (unnecessary) retrans- 

based on the estimate of the smoothed round-trip time (srtt) 

missions occur for packets that have already reached the 
mobile host. 

The state maintained by snoop is soft state and can easily be 
reconstructed from scratch by snooping on a few packets 
and acknowledgments. The snoop cache is maintained as a 
circular buffer of packets, consisting mainly of pointers to 
kernel mbufs [LMKQ89] and some other associated infor- 

The persist timer triggers a retransmission if there are unac- 
knowledged packets in the cache, and if there has been no 
activity either from the sender or receiver for 200ms. This 
timer also sets the number of expected DUPACKs to zero 
and the next expected acknowledgment to one more than 
the last ACK seen so far. These timers and their associated 
retransmissions are critical when packet losses are high 
(e.g., due to interference or movement), since they increase 
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Figure 4. Throughput received by the mobile host at different bit-error rates (log2 scale). The vertical error bars show 
the standard deviations of the receiver throughput. 

the number of transmission attempts and thereby increase the 
likelihood of the packet getting through sooner to the mobile 
host. 

5. Performance 

We performed several experiments with the snoop protocol 
on our wireless testbed and compared the resulting perfor- 
mance with unmodified TCP. We present the results of these 
experiments in this section. In the presence of no packet 
losses, the maximum throughput achieved by a TCP connec- 
tion over the: wireless link was about 1.6 Mbits/s. The rated 
maximum raw bandwidth of the wireless link was 2 Mbits/s. 
We present the results of data transfer from a fixed sender to 
a mobile rec:eiver. These were obtained using the network 
configuration sh.own in Figure 3. The sender TCP stack was 
based on TC!P Reno, an implementation that supported fast 
retransmissions upon the arrival of three duplicate acknowl- 
edgments. The maximum possible window size for the con- 
nection was 64 KBytes and the maximum TCP segment size 
was 1460 bytes. 

In order to measure the performance of the implementation 
under controlled conditions, we used a Poisson-distributed 
bit error model. We generated a Poisson distribution for each 
bit-error rate and changed the TCP checksum of the packet at 
the base station. if the error generator determined that the 
packet should be dropped at the receiver, before forwarding 
the packet over the wireless link. The same operation was 
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done for packets (acknowledgments) from the mobile host. 
Each run involved a 10 MByte transfer and this was 
repeated ten times at each error rate. Figure 4 compares the 
throughput of a connection using the snoop protocol with 
that of a connection using an unmodified TCP implemen- 
tation, for various Poisson-distributed bit-error rates 
shown on a log scale. The vertical error bars in the figure 
show the standard deviation of the receiver throughput. 

We see that for error rates of over 5~10~~ (close to the :! 
Mb point on the x-axis of the graph) the snoop protocol 
performs significantly better than unmodified TCP, achiev- 
ing a bandwidth improvement factor of 1 to 20 depending 
on the bit error rate. In fact, the snoop protocol was robust 
and completed the run even when every other packet was 
being dropped over the last link, while the regular TCP 
connection didn’t make any progress. Under conditions of 
very low bit error rates (< 5~10~~) we see little difference 
between the snoop protocol and unmodified TCP At such 
low bit errors there is typically less than one error per 
transmitted window and unmodified TCP is quite robust at 
handling these. At these low error rates, snoop behaves as 
is it were not present and this ensures no degradation in 
performance. 

A more detailed picture of the behavior of the connection 
can be seen can be seen in Figure 5, which plots the: 
sequence numbers of the received TCP packets versus 
time for one of the experiments. These values were 
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Figure 5. Sequence numbers for transfer to mobile bost over channel with 3.8~10-~ (l/256 Kbits) BER. 

obtained using the tcpdump [MJ93] network monitoring 
tool. The figure shows the comparison of sequence number 
progression in a connection using the snoop protocol and a 
connection using unmodified TCP for a Poisson-distributed 
bit error rate of 3.9x10m6 (a bit error every 256 Kbits on 
average). We see that the snoop protocol maintains a high 
and consistent throughput. On the other hand, regular TCP 
unnecessarily invokes congestion control procedures sev- 
eral times during the duration of the connection. This phe- 
nomenon appears as the flat and empty regions of the curve 
and degrades the throughput significantly. For this particular 
run, the aggregate bandwidth with the snoop protocol was 
about 1 Mbit/s, while it was only about 0.25 Mbit/s for reg- 
ular TCP 

In summary, the results for moderate to high error rates are 
very encouraging. For bit error rates greater than 5~10~~ we 
see an increase in throughput by a factor of up to 20 times 
compared to regular TCP depending on the bit error rate. 
For error rates that are lower than this, there is little differ- 
ence between the performance of snoop and regular TCP, 
showing that the overhead caused by snoop is negligible. 

6. Comparisons with Other Approaches 

In this section, we compare the snoop protocol to the other 
protocols described in Section 2.. All these protocols seek to 
improve end-to-end performance by minimizing the number 
of sender timeouts and retransmissions. In addition, the time 
for which the connection remains idle after a handoff is 

9 

completed must be made as small as possible [CI94]. 

As mentioned in Section 2., the main drawback of the split 
connection approach is that the semantics of TCP acknowl- 
edgments are violated. In contrast, the snoop protocol main- 
tains the end-to-end semantics of the TCP connection 
between the fixed and mobile hosts by not generating any 
artificial acknowledgments. Handoffs in this approach 
require the transfer of a significant amount of state. For 
example, I-TCP handoff times vary between 265 and 1400 
ms depending on the amount of data in the socket buffers 
that need to be transferred from one base station to another 
[BB95]..The snoop protocol performs handoffs based on 
multicast as described in Section 3.3 and typical completion 
times are between 10 and 25 ms. 

Caceres and Iftode [CI94] show that show that a mechanism 
based on fast retransmissions is quite successful in reducing 
delays after a handoff. However, one drawback of their 
approach is that it doesn’t handle errors well. Another prob- 
lem is that the sender usually reduces the transmission win- 
dow size before starting fast retransmissions. Furthermore, 
several TCP implementations don’t support fast retransmis- 
sions. In contrast, the snoop mechanism has the advantage 
that the connection will not be idle for much time after a 
handoff since the new base station will forward cached 
packets as soon as the mobile host is ready to receive them. 
One other advantage of this approach is that it results in 
low-latency handoffs for non-TCP streams as well, espe- 
cially continuous media streams. 
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The snoop protocol is similar to link-level retransmissions 
over the wireless links in that both schemes perform retrans- 
missions locally to the mobile host. However, the snoop 
protocol is closely coupled to TCP, and so does not perform 
many redundant (and possibly competing) retransmissions 
(i.e, few packets are retransmitted both locally and by the 
sender because of timeouts). Packets retransmitted by the 
sender that arrive at a base station are already cached there. 
This happens most often because the sender often transmits 
half a window’s worth of data and several of these packets 
are already in the cache. In our experiments, a very small 
percentage of these packets actually arrived because of 
sender timleouts. In order for link-level retransmissions to 
perform well!, they need to be closely coupled with the 
higher-level protocols, especially if those also provide reli- 
able service via retransmissions. Also, there are several 
higher-level protocols that don’t require reliable transfer, 
but those pack.ets may also be retransmitted multiple times 
on the wireless link. This is not necessary, since packets 
arriving late are useless for several applications, and 
retransmissions at the link-level are not required for them. 

7. Future Work 

We are currently in the process of measuring and optimizing 
the performance of the snoop protocol under various situa- 
tions. Thes,e include wide-area connections to a mobile host, 
data transfers from a mobile host, and multicast-based hand- 
offs. We are also working on characterizing the behavior of 
TCP conne.ctions and the snoop protocol in the presence of 
real-life sources of interference. 

In addition to this, we have started working on improving 
the TCP performance of the Metricom system, a metropoli- 
tan-area packet relay network. This system has multiple 
wireless hops from the base station to a mobile host and 
operates at bandwidths of about 100 Kbits/s. Although there 
are several differences between this and the Wavelan, we 
believe that with minor modifications the snoop protocol 
will result i.n improved performance in this environment. 

Wireless networks of the future are likely to be heteroge- 
neous where each host will simultaneously be connected to 
different wireless interfaces, that may interfere with each 
other. An example of this is an in-building Wavelan network 
and a campus-wide packet relay network, that also extends 
inside buildin,gs. The problems of improving TCP perfor- 
mance, routing and handoff in such heterogeneous net- 
works, characterizing the impact of interference on 
connection quality, and support for network-characteristic- 
aware applica.tions are challenging ones with significant 
practical v;llue [ Kat941. 

8. Summary 

We have presented a protocol to improve the performance 
of TCP in networks with wireless links and mobile hosts. 

This protocol. works by modifying the network-layer soft- 
ware at the base station, and involves no other changes to 
any of the fixed hosts elsewhere in the network. The main 
idea is the caching of packets intended for the mobile host at 
the base station and performing local retransmissions across 
the wireless link. We have implemented this protocol on a 
wireless testbed consisting of IBM ThinkPad laptops and 
i486 base stations running BSD/OS 2.0 communicating 
over a 2 Mbits/s AT&T %Vavelan. Experiments show that the 
protocol is significantly more robust tha.n regular TCP at 
dealing with unreliable links and multiple errors in a win- 
dow; we have: achieved performance improvements of up to 
20 times over normal TCP/IP for data transfer from a fixed 
to a mobile host across a wide range of bit error rates. 
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